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6. Fluorescence resonance energy transfer (FRET) 

 

6.1. Introduction 

 

We have seen that the relaxation of a vibronic state (i.e. a state in which a molecule 

has both electronic and vibrational excitations), and that of an upper electronically 

excited state (higher than the first excited singlet) are very fast. It usually takes less 

than a picosecond to relax to the lowest vibronic state of the first excited singlet state. 

This means that the cooling of the molecule, i.e. the dissipation of excess vibrational 

energy, is very fast. This also should hold true for a pair of molecules, considered as a 

large “supermolecule”, if the excited state of one of these molecules (called the 

“donor”) has a higher energy than that of the other one (called the “acceptor”). 

Relaxation will take place and transfer the excitation energy of the donor to excitation 

of the acceptor. The corresponding process is called energy transfer. It leads from a 

state with (electronically) excited donor and ground-state acceptor to the state with 

(electronically) excited acceptor and ground-state donor. The difference in electronic 

energy between those two states is dissipated in vibrations of the molecules. In the 

limit where the coupling between donor and acceptor is weak enough, i.e., weaker 

than the electronic energy difference between the molecules, and weaker than the 

energies of all vibrations involved, this process is known as fluorescence resonance 

energy transfer, or FRET. There are two possible mechanisms for energy transfer.  

i) First, a dipole-dipole coupling mechanism called a Förster transfer. This process 

involves electromagnetic interactions between the charge distributions in the two 

molecules, so that the excited molecule (the donor) goes from its excited to its ground 

state, while the other molecule (the acceptor) inversely goes from its ground state to 

its own, energetically lower, excited state, while some part of the energy is released as 

vibrations or phonons. This process can be seen as the exchange of a virtual photon, 

as each electron remains localized on its respective molecule. Because the donor and 

acceptor are generally very close to each other, in practice less than 10 nm, each one 

of them lies in the near field of the other and their interaction is electrostatic, or 

Coulombic (retardation can be neglected). 

ii) Second, a double electron exchange process. In that case, two electrons are 

exchanged in a correlated manner between the donor and acceptor, one between the 

HOMOs, and one between the LUMOs of these molecules. Again, some vibrational 
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quanta are created to ensure energy conservation. The latter process, called Dexter 

mechanism, is particularly important in the case of energy transfer between triplet 

states, because the direct dipole-dipole process is then spin-forbidden. 

 

The probability per unit time of FRET, called FRET rate, is given by Fermi's golden 

rule. It is proportional to the square of the coupling, and therefore varies very rapidly 

with distance R between donor and acceptor considered as points dipoles. This 

distance dependence is 6−R  in the Förster case, and Re α4−  in the Dexter case; α  is a 

typical decay coefficient of electronic wavefunctions ; the factor 4 arises from the 

square of the wavefunction and from the correlated exchange of two electrons in the 

Dexter process. Its strong dependence on distance makes Förster-FRET a very useful 

tool to measure and monitor distances between two dipoles in the range from 2 to 10 

nm. The characteristic range of FRET depends on the donor (D)- acceptor (A) 

molecules, as explained below. 

 

6.2. Model and calculation of the FRET rate 

 

We consider the Förster process only, which applies to strongly allowed transitions of 

donor D and acceptor A. We introduce the vibrational levels a, a’ (d, d’) of the 

acceptor (donor) in their ground and excited states respectively (see Figure 6.1). 

Donor and acceptor are coupled by dipole-dipole interaction. In the optical domain 

and at distances much shorter than the wavelength of light, dipole-dipole interaction 

varies as the classical electrostatic dipole-dipole interaction. It goes over into an 

inverse squared distance dependence at distances much larger than the wavelength 

(see Exercise 6.3), where light emission and absorption by dipoles are valid 

description of the energy transfer process. For usual donor-acceptor pairs, the 

distances are small (1-10 nm), and the corresponding interaction is obtained from the 

classical dipole-dipole interaction formula by replacing the classical dipole moments 

by quantum-mechanical operators (transition dipole moments) acting on the states of 

each molecule. Using a tensor notation, where R̂  is the unit vector along the axis 

joining D and A: 
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In this expression, only the electrostatic field of the dipole has been considered. The 

retarded field, which dominates at distances larger than the wavelength, has been 

neglected. This is valid since FRET is important only at short ranges (at long ranges, 

the process merges into emission of a “real” photon by the donor, followed by its 

absorption by the acceptor). Note also that above formula supposes the dipoles to lie 

in vacuum; in solution or in condensed matter, the formula must be corrected for the 

index of refraction of the medium and for local fields due to nearby polarizable 

objects. The initial and final states in FRET can be written: 

 

* ';i D d a=  

; * 'f d A a=    , 

with Boltzmann populations 

)()'()( apdpip ×= ,  

and where the star (*) indicates the excited electronic state of either molecule and the 

prime indicates vibrational states in the potential of an excited state. In the Born-

Oppenheimer approximation, these states can be written as products of electronic and 

vibrational wavefunctions (note that the potentials of these vibrational wavefunctions 

differ in the ground and excited states, both for donor and acceptor). Thus, the dipole-

dipole matrix element between initial and final states writes as : 

 

' 'DA DAi V f W d d a a=  

 

where DAW  is the purely electronic dipole-dipole matrix element, involving only 

electronic wavefunctions and the other products are Franck-Condon amplitudes for 

donor and acceptor. DAW  varies as the inverse cube of the distance between donor 

and acceptor. 
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Figure 6.1 : Level diagram for energy 

transfer (FRET) from a donor to an 

acceptor. Fluorescence can arise from 

direct transitions from the excited donor, or 

from the excited acceptor after energy 

transfer. 

 

 

 

 

 

Applying Fermi’s golden rule, we may now write the FRET rate from D to A : 
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This expression can be rewritten using two auxiliary normalized functions of energy : 
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It can be checked easily that ( )DF E  is the normalized fluorescence spectrum of the 

donor and ( )AA E  is the normalized absorption spectrum of the acceptor in the Born-

Oppenheimer approximation. The normalization is done so that the integral of these 

functions over the whole energy spectrum is unity. We therefore get the following 

relation: 

 

22 ( ) ( )dDA DA D Ak W F E A E Eπ
= ∫


 

 

The overlap integral, which has the dimension of the inverse of an energy, plays the 

role of a density of states, ( ) 1 ( ) ( )dD AE F E A E E
E

ρ = =
∆ ∫ . We thus note that, from 

the molecule’s point of view, the emission and absorption of a photon corresponds to 
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the same process, whether the field is created by a faraway source such as a laser, or 

by a nearby dipole such as the donor. The overlap integral thus involves the same 

absorption spectrum measured by excitation with a plane wave and spontaneous 

emission spectrum towards vacuum modes measured in standard ensemble 

experiments. Finally, note that the FRET rate decreases as the sixth power of distance 

between donor and acceptor. 

The orientation dependence of the FRET rate is given by three angles defining the 

geometry of the donor-acceptor system: Aθ , Dθ  are the angles of the dipoles with the 

axis joining D and A, and ϕ  is the angle between the two planes containing 

respectively the DA axis and the donor dipole on one hand, and the DA axis and the 

acceptor dipole on the other hand (see Figure 6.2). This angular dependence of the 

rate amounts to multiplication by a factor 2κ  deduced from : 

 

2cos cos sin sin cosD A D Aκ θ θ θ θ ϕ= − +  

 

 
Figure 6.2 : The FRET rate depends on the orientations of the transition dipole moments of the donor 

and acceptor molecules, relative to the DA vector joining their centers, and on the angle ϕ  between 

the planes defined by DA axis and dipole moments. 

 

Considering the dipole’s electrostatic field, one sees that 2κ  can vary between 0 and 

4. For isotropic distributions of D and A, and provided the orientation fluctuations are 

slower than the transfer itself, the average transfer rate is proportional to the average 

value of 2κ , 
3
2  (see Ex. 6.1). For random orientations of donor and acceptor, the 

probability distribution of 2κ  presents a divergence at 2 0κ =  (see Ex. 6.5): there is a 

relatively large probability density of finding donor and acceptor with dipole 

moments oriented so that no FRET takes place, essentially because one of the dipole 
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moments has a large probability to be nearly perpendicular to the field created by the 

other.  

 

6.3. FRET efficiency and Förster radius 

 

FRET opens up a non-radiative channel for the donor molecule. We can define the 

efficiency of this channel as the FRET efficiency E as the yield of transfer to the 

acceptor as compared to the local dissipation channels of the donor in the absence of 

the acceptor, fluorescence and non-radiative relaxation: 

fDDA

DA
kk

kE
+

= , 

fDk  being the fluorescence decay rate of the donor, including radiative and non-

radiative channels. The Förster radius 0R  is the distance at which, for isotropic 

distributions, the FRET efficiency is 50%. If we suppose that the donor’s non-

radiative decay is negligible, which is a good approximation for many dyes, the 

Förster radius can be expressed by using the radiative fluorescence rate of the donor, 

itself a function of the donor’s transition dipole moment: 
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For typical dyes, transition dipole moments are of the order of 1 electron-Angstrom 

(i.e., 4.8 Debye). For a large value of the overlap integral of 1/[200 cm-1], 

corresponding to a strong spectral overlap, the Förster radius is large, about 8 nm in 

the case of the couple Cy5-Cy5.5, which presents strongly allowed transitions with a 

very good overlap between donor emission and acceptor absorption. More typical 

values of the Förster radius for strong transitions are in the range 5-8 nm, e.g., 5 nm 

for Cy3-Cy5, corresponding to a lower overlap integral. For isotropic angular 

distributions of the dipoles, the FRET efficiency is related to the Förster radius and to 

the distance by:  
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As can be deduced from the fluorescence rates of the donor in the absence and in 

presence of the acceptor, the transfer efficiency can also be deduced from lifetime 

measurements of the donor, according to: 

 

( )1
(0)
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= − . 

Lifetime-based measurements of the FRET efficiency are often preferred to those 

based on fluorescence intensities, as lifetime measurements are less sensitive to 

experimental conditions than intensity measurements. 

 

6.4. Single-pair FRET  

 

In order to observe significant FRET, we need donor and acceptor molecules within 

about one Förster radius from each other. This can be achieved in biomolecules by 

labeling the same molecule (e.g. a DNA strand, or a protein) with the two dyes (cf. S. 

Weiss, Science 283 (1999) 1676). FRET is well adapted to typical sizes of protein 

molecules. The transfer will appear as acceptor fluorescence when the donor only is 

excited. However, due to the breadth of absorption bands, acceptor molecules are 

always excited to some extent by the laser exciting the donor; in quantitative FRET 

measurments, where absolute distances are sought, the effect of direct acceptor 

absorption has to be corrected for. 

 
Figure 6.3 : Two biomolecules labelled with 

donor and acceptor fluorophores respectively, 

may associate. In the bound form, FRET is 

efficient and the acceptor fluoresces more 

strongly than in the unbound state. 

 

 

Single-pair FRET is detected by measuring for each doubly-labeled molecule the 

fluorescence intensities of donor and acceptor. The molecular fluorescence is split by 
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a dichroic filter into signals from the donor DF , and from the acceptor AF . These 

quantities must be corrected for non-radiative rates (fluorescence quantum yields) and 

for direct acceptor absorption. The ratio 

DA

A
FF

FE
+

= , 

is then the FRET efficiency, and directly gives the D-A distance if the angular 

distribution of the molecules is isotropic. In the case of fixed donor and acceptor 

orientations, the angular factor is much more difficult to evaluate. It not only depends 

on the respective orientation of the dipole moments, which could be measured by 

polarization microscopy, but also on the radius vector, which is usually unknown. 

Lifetime measurements also provide access to the FRET efficiency. When possible, 

this measurement in the time domain is more direct and reliable than intensity 

measurements, which are subject to cross-talk and background artefacts.  

 

In bulk experiments, it is very important to ensure a high purity of the doubly-labeled 

molecules, because only average intensities are measured. For example, a fraction of 

the molecules labeled with the donor only would lead one to underestimate the 

transfer efficiency. In single-molecule experiments, however, one can measure the 

fluorescence signals of each molecule separately by exciting at two different 

wavelengths. The corresponding method is called Alternating Laser Excitation 

(ALEX, Kapanidis) or Pulse-Interleaved Excitation (PIE, Lamb) when the two lasers 

deliver consecutive pulses of two colors. In this way, the “stoichiometry” of the 

constructs, i.e., a number characterizing the presence of both donor and acceptor in 

the construct can be verified: bursts of complete constructs should give fluorescence  

both under donor and acceptor excitation. Simply-labeled constructs with the donor 

alone give no fluorescence upon acceptor excitation, while constructs with acceptor 

alone give only the cross-talk of acceptor fluorescence upon donor excitation. These 

incomplete constructs will appear in the corners of a stoichiometry-FRET efficiency 

scatter plot. Incomplete constructs can thus be easily eliminated from the statistics, 

either in a simple histogram (see Fig. 6.4) or in a scatter plot of stoichiometry versus 

efficiency. 
 

The easiest measurement in FRET is that of the distributions of efficiencies in 

immobilized molecules, or in slowly diffusing molecules if the signal is sufficient. In 
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liquid solution, one often assumes isotropy, but this may not be valid if the labels are 

interacting strongly with the molecules to which they are bound, for example proteins. 

 
Figure 6.4 : A histogram of the 

FRET efficiencies measured for a 

large number of donor-acceptor 

pairs may reveal several 

distributions. Peaks at 0 and 1 

may represent unbound 

molecules, or pairs in which 

either the acceptor or the donor 

have been photobleached. The other distributions represent two conformations of the pair, with a 

distribution of distances and/or of angles. 

 

A more difficult measurement is that of the dynamical fluctuations of the FRET 

efficiency. If the donor-acceptor distance fluctuates, while donor and acceptor are still 

randomly exploring isotropic distributions, anti-correlated fluctuations will appear 

either directly in the intensity traces of D and A fluorescence for immobilized 

molecules (Fig. 6.5), or as a negative cross-correlations in a FCS experiment in 

solution. 

 
Figure 6.5 : Conformational changes of a 

biomolecule carrying two FRET labels. Because these 

changes affect the FRET efficiency, they appear as 

anti-correlated fluctuations in the fluorescence traces 

of donor and 

acceptor. 
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Exercise 6.1: Show by integration over angles that, for an isotropic distribution of 

donor and acceptor, the average angular factor 2 2
3

κ = . 

 

Exercise 6.2: We consider energy transfer from a single donor molecule to a single 

molecular layer of acceptors (e.g., a Langmuir film, or a graphene sheet). 

We assume the donor to be at distance h from the acceptor layer, and we disregard 

the angular dependence of the transfer rate. Integrate the donor-acceptor transfer 

rate over the whole acceptor layer. Show that the FRET rate varies as 4h− . 

 

Exercise 6.3: We want to derive the field created by a classical oscillating electric 

dipole ( )exp i tµ ω . Apply Maxwell’s equations and use the scalar (V ) and vector 

( A


)  potentials satisfying Lorentz’s gauge ( 2

1 0VA
c t

∂
∇ ⋅ + =

∂



) to derive Helmholtz’s 

equation for the vector potential:    
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, where the source term stems 

from the current density j


. For an oscillating dipole, show that this source term 

becomes ( )( ) expj i r i tωδ ω µ=


   and that the retarded potential solution  
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  solves the Helmholtz equation. Using the electric field 

expression AE V
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  and 

deduce the following expression of the field, including radiated field and near field: 

( ) 2

2 2 3 2
0
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

 . 

 

Exercise 6.4: Energy transfer from a single donor to a spatially random distribution 

of acceptors (Förster 1949). 

We suppose the acceptors to be immobile during each donor fluorescence decay, but 

to diffuse fast enough that all configurations are sampled when the statistics of the 

fluorescence decay are acquired. For simplicity, we assume the donor’s fluorescence 

lifetime to be very long. 
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i) Express the probability ( )p t  of still finding the donor excited after time t, starting 

from the excited donor at time zero, ( )0 1p = . Consider the donor as interacting with 

N acceptors kA  at distances kR . 

We average this probability over all possible configurations of acceptors within a 

large sphere of radius MR .  

ii) The acceptors being identical and uncorrelated, show that the average obeys: 

( ) ( ) N
p t J t=    , with ( ) ( )( )expJ t k R t= − , and ( ) [ ] 6

0 0/k R k R R −=  is the 

Förster transfer rate as a function of distance and Förster radius 0R . 

iii) Argue that ( )J t  is always very close to 1 for a large integration sphere. 

Expanding to first order, ( ) 1 ( )J t tλ= − , derive the following expression: 

( )3
0 0( ) / Mt k t R Rλ π=  (Hint: in the expression of ( )tλ , extend the integration to 

infinity, use an integration by parts, and 1/2

0

xx e dx π
∞

− − =∫ ). 

iv) Conclude that the averaged decay is of the form: ( ) ( )0exp Ap t bc k t= − , where 

Ac  is the volume concentration of acceptors and b is a constant. Physically discuss 

the origin of this unusual analytical form.  

 

Exercise 6.5: Probability distribution function of 2κ , the angular factor in FRET. 

One often averages this angular factor to 2/3, assuming the angular distributions of 

donor and acceptor to be isotropic. However, it is important to realize that the 

distribution function is very spread between 0 and 4, with a divergence for 0. Here, 

we calculate this distribution function following Dale et al., Biophys. J. 26 (1979) 

161. 

i) Write the angular factor 2κ  as a function of the donor angle Dθ  and of the angle ω  

between the acceptor’s dipole and the donor’s field at the acceptor position. The 

result is: ( )2 2 21 3cos cosDκ θ ω= + . 

Because donor and acceptor have uncorrelated random orientations, an isotropic 

distribution of acceptor dipole is an isotropic distribution of the acceptor dipole with 

respect to the donor’s field as well, for every donor orientation. 
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ii) Integration over the two angles through the variables cos Dx θ=  and cosy ω=   

leads to the following expression of the probability density ( )p z  of 2z κ= : 

( ) ( )
1 1

2 2

0 0

1 3p z dx dy z y xδ  = − + ∫ ∫ , 

where delta is the Dirac function. Argue why this expression gives the probability 

density and prove that it is normalized to unity. 

Use the theorem ( ) ( )
0

0 /
x

dff x x x
dx

δ δ= −   , 0x  being the zero of the function in the 

integration domain (supposing there is one at most) to perform the integral on x. Note 

that not all values of y are allowed to get possible values of 0x  falling inside the 

integration domain. 

The result is: 
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Plot the function p(z) between 0 and 4 and explain why the value 2/3 is not particularly probable in an 

experiment where donor and acceptor have fixed orientations. 


