
 40 

4. Fluid solutions 

 

We discuss the case of fluorescent molecules diffusing in a fluid environment, 

for example a drop of solution, a thin liquid film or a Langmuir film, a membrane, a 

capillary channel, or a cell. The most important feature of such experiments is that 

molecules come and go in the focal volume, and that statistics over large numbers of 

molecules are both necessary and possible. Usually, there are not enough photons 

emitted for a detailed study of each single diffusing molecule, therefore one has to 

accumulate data collected over large numbers of molecules. Microscopy and 

spectroscopy methods in fluid solutions are strongly related to single-molecule 

methods, because usually only one molecule is detected at a given time (although 

fluorescence correlation also works for small numbers of them simultaneously present 

in the detection volume), but they are not truly single-molecule methods because it is 

in general impossible to focus on individuals and to compare different individuals. In 

this sense, these are ensemble methods, giving statistical histograms. However, if 

different quantities can be measured on the same individual events, i.e., on the same 

molecules, statistical correlations between these different quantities can be obtained. 

This so-called multiparameter analysis, pioneered by Claus Seidel’s group, relates 

directly to single-molecule methods, because such correlations are uniquely obtained 

on a molecule-per-molecule basis. 

 

4.1. Photon counting histograms, burst analysis 

 

A first way to analyze the fluorescence signal statistically is to record a histogram of 

the signal intensities in a time trace, i.e. the number of counts recorded during a given 

time interval, or bin, for example a few tens of microseconds for intense signals. For a 

single emitter with constant rate, the distribution of counts in the time bins is 

Poissonian. In the case of diffusing molecules, the distribution of the number of 

molecules in the focus is also Poissonian, and the observed histogram is a convolution 

of these two distributions. Diffusion during the emission broadens the distributions 

even more. Note that this method does not give the time-dependence of the 

fluctuations, unless the time window is varied. 

A variant of this method is the analysis of burst sizes. This is particularly useful in the 

case of a solution flowing in a capillary or microfluidics channel, where the dwell 



 41 

times of the molecules within the focus are well controlled. Each fluorescent molecule 

crossing the laser focus gives a burst of light. If the flow motion is faster than free 

diffusion across the focus, the burst intensity is determined mainly by the flow 

velocity. Burst size analysis is used in fluorescence biomedical assays.  

 

4.2. Fluorescence correlation spectroscopy (FCS) 

 

We have already discussed the principle of the method, which is to keep track of the 

intensity fluctuations of a fluorescence signal. The correlation method was applied in 

the 1970’s to study the thermodynamic fluctuations of fluids via light scattering. 

Quasi-elastic light scattering can be measured in the spectral domain (through the 

first-order correlation of the field), or in the intensity domain (by second-order 

correlation of the intensity). It was then realized that this method could be applied to 

fluorescent liquids. However, because fluorescence is an incoherent process, the total 

emission is the sum of emissions from all emitting molecules in the (con)focal 

volume. The ensuing fluctuations can be measured, giving rise to fluorescence 

correlation spectroscopy. FCS really took off in the early 1990’s with the large 

increase in detection efficiency thanks to APD’s, microscope optics, and better filters. 

This very useful and powerful method is now widely used for the following reasons: 

- it gives access to a wide range of times, often more than 8 orders of magnitude! This 

range is only limited by the photon count rate and the detector dead time on the short-

time side (but this limitation can be circumvented by cross-correlating the signals of 

two detectors), and only by the experiment’s duration on the long-time side. 

- because the correlation data are averaged over a long integration time which can 

reach minutes or hours, statistical noise can be considerably reduced, enabling 

detection of weak and subtle effects; 

- concentration requirements in FCS are much less stringent than in single-molecule 

measurements. FCS also works for numbers of molecules in the focus significantly 

larger than 1 (up to 100 or 1000), at the expense of a lower contrast (only partly offset 

by the higher signal). Because the number of molecules used is high and molecules 

are renewed constantly, FCS is also less sensitive to photobleaching. The illumination 

doses received by each molecule are usually much lower than in other single-

molecule observations. 
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- FCS is a direct statistical method that does not require thresholds or other arbitrary 

parameters. It is largely insensitive to experimental conditions: i) the correlation 

function does not depend on detection yield (it cancels in the normalization); ii) a 

constant background will change the contrast of the correlation function only, not its 

time dependence. 

All sources of fluctuations of the fluorescence can give rise to a signature in the 

correlation function. We examine the main causes of fluctuations hereafter. 

 

4.2.1 Translational diffusion 

A molecule crossing the laser focus can be seen as a concentration fluctuation, which 

will relax according to Brownian diffusion. From elementary diffusion theory, we 

know that the mean square displacement of a diffusing molecule scales linearly with 

time and that the volume sampled scales as time to the power 1.5. 

 
Figure 4.1 : Translational diffusion of a molecule in a laser focus (left). The center image shows the 

spread of the probability density as a function of time. The correlation function (right) decays with time 

as the probability density of the molecule, i.e. as the power 1.5 of time for long times in 3D space. Note 

the logarithmic timescale, very often used in correlation spectroscopy to visualize the broad range of 

times accessible. 

 

Because the initial position cannot be known more accurately than the point-spread 

function, the fluctuation decay is cut off for short times by the diffusion time within 

the focus, Drd 4/2=τ , where r is the size of the focus and D is the diffusion 

coefficient. A typical value of D for a fluorescent dye in water is 9 2 -110 m s−   

(1 2μm /ms , corresponding to less than a millisecond in a laser’s focal volume). A 

more rigorous treatment is based on a Fourier transform of the diffusion equation, 

assuming the fluorescence efficiency to vary spatially as a Gaussian (this is valid in 

the transverse plane for a Gaussian laser beam, but only approximately so in the axial 

direction). This calculation gives for the correlation function : 
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where tω  and aω  are the transverse and axial beam waists, and N is the average 

number of molecules in the excitation volume. Note that statistical fluctuations 

normally scale as 1/ N , but because these fluctuations contribute the correlation 

function through their square, we obtain a 1/ N  scaling. 

Einstein related the diffusion coefficient to the local viscosity η  around the molecule 

and its diameter R  (if the molecule is assimilated to a sphere). The Stokes drag force 

on such a sphere for velocity v  is: 

 

RvF πη6= . 

 

The mean free path L  of the Brownian random walk is related to the average velocity 

v  and to the time step τ  of the walk by : 

τvL = . 

Writing that the typical energy dissipated or absorbed in a step of the random walk is 

the thermal (Boltzmann) energy, 

FLTkB = , 

we deduce the Stokes-Einstein relation for the diffusion coefficient D  : 

 

R
TkLD B

πητ 6

2
== . 

 

Although we obtained it from qualitative arguments, this relation is exact. The 

diffusion coefficient is inversely proportional to viscosity and to particle radius. Big 

molecules (proteins, for example) diffuse slower than small ones, but only by a factor 

scaling as the cubic root of their mass or volume. 

Quite generally, note that viscous damping of the particle’s velocity must always be 

associated to a heating mechanism. This heating ensures equipartition of the energy, 

and is related to friction by the fluctuation-dissipation theorem. 
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4.2.2 Rotational diffusion 

A molecule absorbs and fluoresces as a dipole (albeit this dipole may differ in 

direction for the different transitions in those processes). Therefore, rotational 

diffusion of the molecule has an influence on the absorption of laser light (which is 

transverse to propagation and thus anisotropic, even in the case of an unpolarized 

laser beam) and on the detection of fluorescence if there is an analyzer in the 

detection path. Angular diffusion in three dimensions is a complex process, which 

obeys a diffusion equation similar to the Schrödinger equation of a rotor, but with an 

imaginary time. The solution involves spherical harmonics, each harmonic relaxing 

with time ( )1 rτ+  , rτ  being the shortest rotational relaxation time 1/ rD  and   an 

integer characterizing the angular momentum value probed in the measurement. An 

arbitrary object will in general present three principal rotation axes with different rates 

of diffusion around those axes. In the case of a spherical rotor, however, these three 

axes are degenerate. Moreover, for a simple observable such as the intensity of 

polarized fluorescence from a linear dipole moment, the rotational diffusion of a 

sphere relaxes through a single exponential with time 1/ 6rτ = Θ  corresponding to 

2= . 

Here, we discuss a simple one-dimensional version. Let us consider a dipole moment 

performing a random walk in rotation around a fixed axis perpendicular to the dipole. 

Starting from an angle 0θ  with the excitation polarization (supposed to be linear), a 

random walk will add a small angle δ  after diffusion time τ , ( τδ Θ=2 , where Θ  is 

the rotational diffusion coefficient). The fluorescence intensity is proportional to the 

squared projection of the dipole moment on the laser polarization (provided no 

analysis is made upon detection). Calculating this averaged square, we find that it 

relaxes exponentially to the isotropic distribution: 

( )2 2 2
0cos ( ) 1/ 2 cos 1/ 2 e τθ τ θ − Θ− = − . 
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Figure 4.2 : Rotational diffusion of a dipole moment (left) as a random walk on a sphere. The center 

picture shows the average moment of a bunch of molecules, and a step of size δ  of one of them. Upon 

averaging, the squared projection decreases exponentially with time, leading to the correlation on the 

right. 

 

Therefore, the correlation function will decay exponentially. Note the difference with 

the case of translational diffusion: because the space of available angles is finite, the 

equilibrium is reached exponentially, much more rapidly than in the translational 

case. A reasoning similar to the one for translational diffusion gives the rotational 

diffusion constant as a function of viscosity and of the hydrodynamic volume HV  of 

the diffusion object, by the Debye-Stokes-Einstein relation: 

 

B

H

k T
Vη

Θ = . 

 

We define the hydrodynamic volume of the object by the above relation. For a sphere, 

hydrodynamics calculations show that 38HV Rπ= . For small dye molecules in water 

or usual solvents, rotational diffusion times are on the order of nanoseconds, 

comparable to fluorescence lifetimes. This means that the orientation of a molecule 

may vary considerably during fluorescence. The effect of rotational diffusion can be 

detected in steady state or in pulsed experiments by measuring fluorescence 

polarization, providing an average or time-dependent observable called fluorescence 

anisotropy. 

 

4.2.3 Dark state (triplet) 

We now suppose that the fluorescence intensity may vary because the molecule can 

go to a different state, usually a dark one in which fluorescence is suppressed. 

Chemical or physical changes in the molecule or its environment can lead to changes 
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in the absorption, or to quenching of the fluorescence. The resulting fluorescence 

fluctuations are due to random passages in the dark state, so that the signal of each 

single molecule resembles a random telegraph (Fig. 4.3). The kinetic rate equations 

lead to an exponential decay of the correlation function : 

 

( )ττ 21
1

2)2( 1)( kke
k
kg +−+=  

 
Figure 4.3 : Random jumps between a bright and a dark state, leading to a random telegraph signal 

for a single molecule. The corresponding correlation (right) decays exponentially with the sum of the 

jump rates. The contrast increases when the duration of the bright periods decreases. The times given 

are typical for intersystem crossing transitions to and from a triplet state. 

 

In general, a molecule in a fluid solution is subject to all of these effects, and the 

correlation function can be quite complex. Figure 4.4 shows an example of a 

correlation function for a dye solution in water, showing antibunching at nanosecond 

times, triplet blinking at microsecond times and translational diffusion at millisecond 

times. For this small molecule, rotational diffusion is too fast to be distinguished from 

antibunching appearing around the fluorescence lifetime. 

 
Figure 4.4 : Example of a 

fluorescence intensity correlation 

function for rhodamine 110 in water 

showing fluctuation phenomena at 

different time scales (work from 

Seidel’s lab: Felekyan et al., Rev. Sci. 

Instrum. 76 (2005) 083104). 
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In many cases, the fluorescence intensity can be written as a product of independently 

fluctuating quantities. This is the case for translational diffusion, rotational diffusion, 

and chemical fluctuations. However, the triplet photophysics depends on the local 

excitation intensity seen by the molecule, and will therefore correlate with 

fluctuations due to translational diffusion in the excitation spot. If two different 

fluctuation processes are uncorrelated, and if the intensity is the product of two 

fluctuating functions, its correlation function writes as a product of correlation 

functions, i.e. as the product of the two functions pertaining to each type of 

fluctuation alone: 

)()()( tgtftI ×=  

( ) ( ) ( ) ( ) ( ) ( )I t I t f t f t g t g tτ τ τ+ = + × + , 

which means that each type of fluctuations can be recognized and identified on a 

logarithmic scale of the correlation times, independently of the other processes. 

 

4.3. Variants of FCS 

 

The correlation function is a general method, which provides time-resolved 

information from a fluctuating signal. It can obviously be applied to other signals than 

fluorescence intensity, for example fluorescence lifetimes, but also to non-optical 

signals such as currents in ion channels, for instance. Hereafter, we mention a few 

extensions of FCS. 

- Two different signals can be correlated with one another, for example two 

intensities. This is cross-correlation. As an example, we briefly discuss dual-color 

FCS because of its importance in molecular biology. The fluorescence signals of two 

different dyes are separated by a dichroic beam splitter and measured by two 

detectors. If the two dyes are linked (for example due to protein-protein interaction), 

the translational diffusion of the complex will appear in the cross-correlation. If the 

molecules do not interact, no correlation appears (the fluctuations are independent).  

- Fluorescence can be generated by two-photon or three-photon pulsed excitation. The 

advantages of this scheme are that there is less scattering of the longer excitation 

wavelengths, and that the focal volume is limited by the nonlinearity, therefore no 

pinhole is needed in the detection to obtain a slice of the sample (see Fig. 4.5; this 

effect, called optical sectioning, was mentioned earlier). Photobleaching is suppressed 
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altogether for out-of-focus molecules, although it is often enhanced for the molecules 

in the focus.  

- Correlation can also be applied to any optical signal, linear or nonlinear. A good 

example is Coherent Anti-Stokes Raman Scattering (CARS). Being a coherent 

process, CARS would be very difficult to observe with a single molecule. However, it 

can be observed with small particles down to some tens of nm in diameter, such as 

organelles in cells. 

 

 

 
Figure 4.5 : Intensity profile around the waist of a Gaussian beam (upper left), with a line density of 

molecules along z increasing quadratically on both sides of the focus. The intensity along the axis 

varies as a Lorentzian ( )2 21 / a z+ (upper right), which leads to strong background for one-photon 

excited fluorescence. This background is reduced by the pinhole in confocal microscopes. For two-

photon excitation, on the contrary (lower right), the fluorescence intensity decreases as ( )2 2 2
1 / a z+ , 

leading to a localized excitation spot (dashed curve). The pinhole is no longer necessary.  

 

4.4. Multiparameter analysis 

 

Fluorescence gives rise to several different observables : intensity, lifetime, spectrum, 

polarization, FRET (see a later lecture), etc..  In order to fully exploit the fluorescence 

signal of a single molecule, one ideally would like to measure all of them with a time 

resolution as high as possible. Because the number of fluorescence photons per unit 

time is limited, one has to choose the more relevant parameters, and measure these 



 49 

with the highest available time resolution. Determination of a fluorescence lifetime 

with an accuracy of a few % requires at least a thousand photons. A polarization 

measurement (or a crude measurement of the shift of a fluorescence spectrum) can be 

done with two detectors and a polarizing beam-splitter (or a dichroic beam splitter) 

and requires at least a few tens of photons. Once two (or more) quantities are 

measured for a population of molecules which have crossed the excitation volume, the 

quantities can be cross-correlated. The correlation may reveal different conformations 

of proteins, protein-protein or protein-DNA complexes (see the work of C. Seidel and 

collaborators).  

 

Exercise 4.1: Consider an uncorrelated random stream of photons of n counts per 

second. We are interested by coincidences within a short time τ . What is the number 

of coincidences measured during some long integration time T ? 

This signal is provided by a single molecule, which on average will provide only N  

fluorescence photons before bleaching. Which experiment will provide the best 

correlation signal on time τ : 

i) a long experiment with weak excitation intensity? 

ii) or a short experiment with high excitation intensity?  

 

Exercise 4.2: A laser source presents a weak oscillating noise corresponding to an 

intensity of the form ( ) 1 cosf t tε ω= + , where ε  is small. 

i) Calculate the correlation function of this intensity by integration over some long 

interval T . Remove the oscillating terms due to the boundary condition of integration 

by assuming a weak damping constant. 

ii) This source is now used to excite fluorescence in a sample that, with a perfect 

source, would give correlation  ( ) ( )2
0g τ . What is the measured correlation function 

( ) ( )2g τ , assuming the processes in the sample are not correlated with the source 

noise? 

iii) Sketch this correlation function on a log scale of time for a translational diffusion 

process. 
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Exercise 4.3: As a simple model of rotational diffusion, consider a rotator around a 

single axis, with position defined by angle θ . The rotor performs a random walk with 

small angle steps θ∆  done randomly after time step t∆ . Show that the average of 
2cos ( )tθ  decays exponentially with time, and find the time constant, related to the 

rotational diffusion constant. 

Hint: relate the average of 2cos ( )t tθ + ∆  to its value at time t, and expand to second 

order in t∆ . Use the definition of the rotational diffusion constant. 

 

Exercise 4.4: Show that the correlation of a random telegraph intensity signal, 

switching between intensities 1I  and  2I  with rates 1k  and 2k  for leaving state (1) or 

(2) respectively is given by: 

( ) ( ) ( )
( )

( )
2

2 1 2 1 2
1 22

2 1 1 2

1 exp
k k I I

g k k
k I k I

τ τ
−

= + − +  
+

 

 

Hint: start from state (1) or (2) at time zero and calculate the time-dependent 

probability to be in state (1) or (2) at a later time (4 possible cases). 

Alternatively, you might decompose the signal into a background 1I  and a signal 

2 1I I−  and apply the relation obtained in Exercise 3.3. 

 

 


