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6. Fluorescence resonance energy transfer (FRET) 

 

6.1. Introduction 

 

We have seen that the relaxation of a vibronic state (i.e. a state in which a molecule 

has both electronic and vibrational excitations), and that of an upper electronically 

excited state (higher than the first excited singlet) are very fast. It usually takes less 

than a picosecond to relax to the lowest vibronic state of the first excited singlet state. 

This means that the cooling of the molecule, i.e. the dissipation of excess vibrational 

energy is very fast. This also holds true for a pair of molecules, if the excited state of 

one (the donor) has higher energy than that of the other one (the acceptor). The 

corresponding process called energy transfer leads from the excited donor to the 

excited acceptor. In the limit where the coupling between donor and acceptor is weak 

enough (weaker than the energies of all vibrations involved, and weaker than the 

coupling energy between the molecules, see below), this process is known as 

fluorescence energy transfer, or FRET. There are two possible mechanisms for energy 

transfer.  

i) First, a dipole-dipole coupling mechanism called a Förster transfer. This process 

involves Coulomb (electrostatic) interactions between the charge distributions in the 

two molecules, so that the excited molecule (the donor) goes from its excited to its 

ground state, while the other one (the acceptor) inversely goes from its ground state to 

its own (energetically lower) excited state. This process can be seen as the exchange 

of a virtual photon, as the electrons remain localized on their respective molecules. 

ii) Second, a double electron exchange process. In that case, two electrons are 

exchanged in a correlated manner between the donor and acceptor, one between the 

HOMOs, and one between the LUMOs of these molecules. The latter process, called 

Dexter mechanism, is particularly important in the case of energy transfer between 

triplet states, because the direct process is then spin-forbidden. 

 

The FRET rate (probability per unit time), as given by Fermi's golden rule, is 

proportional to the square of the coupling, and therefore varies very rapidly with 

distance R between donor and acceptor, as 6−R  in the Förster case, and as Re α4−  in 

the Dexter case (α  being a typical decay coefficient of the electronic wavefunctions ; 
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one of the factors 2 arises because of the correlated exchange of two electrons in a 

Dexter process). Its strong dependence on distance makes Förster-FRET a very useful 

tool to investigate distances in the range from 2 to 10 nm, depending on the donor 

(D)- acceptor (A) couple. 

 

6.2. Model and calculation of the FRET rate 

 

We consider the Förster process only, which applies to strongly allowed transitions of 

donor D and acceptor A. We introduce the vibrational levels a, a’ (d, d’) of the 

acceptor (donor) in their ground and excited states respectively (see Figure 6.1). 

Donor and acceptor are coupled by dipole-dipole interaction. In the optical domain, 

dipole-dipole interaction varies as the classical electrostatic dipole-dipole interaction 

at distances much shorter than the wavelength of light, but goes over into an inverse 

squared distance dependence at distances much larger than the wavelength (see 

Exercise 6.1). For a donor-acceptor pair, the distances are small, and the 

corresponding interaction is obtained from the classical dipole-dipole interaction 

formula by replacing the classical dipole moments by quantum-mechanical operators 

(transition dipole moments) acting on the states of each molecule. Using a tensor 

notation, where R̂  is the unit vector along the axis joining D and A: 
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In this expression, only the electrostatic field of the dipole has been considered. The 

retarded field, which dominates at distances larger than the wavelength, has been 

neglected. This is valid since FRET is important only at short ranges (at long ranges, 

the process merges into emission of a « real » photon by the donor, followed by its 

absorption by the acceptor). Note also that the dipoles are supposed to lie in vacuum; 

in solution or in condensed matter, the formulas must be corrected for local fields and 

index of refraction. The initial and final states in FRET can be written: 

* ';i D d a=  

; * 'f d A a=    , 
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with Boltzmann populations 

)()'()( apdpip ×= ,  

and where the star (*) indicates the excited electronic state of either molecule and the 

prime indicates vibrational states in the potential of an excited state. In the Born-

Oppenheimer approximation, these states can be written as products of electronic and 

vibrational wavefunctions (note that the potentials of these vibrational wavefunctions 

differ in the ground and excited states, both for donor and acceptor) : 

 

' 'DA DAi V f W d d a a=  

 

where DAW  is the purely electronic dipole-dipole matrix element, involving only 

electronic wavefunctions. 

 
Figure 6.1 : Level diagram for energy transfer (FRET) from a donor to an acceptor. Fluorescence can 

arise from direct transitions from the excited donor, or from the excited acceptor after energy transfer. 

 

Applying Fermi’s golden rule, we may now write the FRET rate from D to A : 
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This expression can be rewritten using the auxiliary normalized functions of energy : 
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It can be checked easily that these functions are the normalized fluorescence of the 

donor and absorption of the acceptor, respectively, in the Born-Oppenheimer 

approximation. We therefore get the following relation: 

 

22 ( ) ( )dDA DA D Ak W F E A E Eπ
= ∫


 

 

The overlap integral, which has the dimension of the inverse of an energy, plays the 

role of a density of states, 1 ( ) ( )dD AF E A E E
E
=

∆ ∫ . The FRET rate therefore decreases 

as the sixth power of distance, and has an orientation dependence given by the angles 

Aθ , Dθ  of the dipoles with the axis joining A and D, and ϕ  the angle between the 

corresponding planes (see Figure 6.2). This angular dependence 2κ  is deduced from : 

 

2cos cos sin sin cosD A D Aκ θ θ θ θ ϕ= − +  

 

 
Figure 6.2 : The FRET rate depends on the orientations of the transition dipole moments of the donor 

and acceptor molecules, relative to the vector joining their centers, and relative to one another. 

 

Considering the dipole’s electric field, one sees that 2κ  can vary between 0 and 4. 

For isotropic distributions of D and A, and provided the orientation fluctuations are 

slower than the transfer itself, one finds for the average value of 2κ  the value 
3
2 . For 

random orientations of donor and acceptor, the probability distribution of 2κ  presents 
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a divergence at 2 0κ = : there is a very large probability density of finding donor and 

acceptor with nearly perpendicular dipole moments.  

 

6.3. FRET efficiency and Förster radius 

 

FRET opens a non-radiative channel for the donor molecule. We can define the FRET 

efficiency E as the yield of transfer to the acceptor as compared to the local 

dissipation channels on the donor in the absence of the acceptor: fluorescence and 

non-radiative relaxation. 

fDDA

DA
kk

kE
+

=  

 fDk  being the fluorescence decay rate of the donor (including radiative and non-

radiative channels). The Förster radius 0R  is the distance at which, for isotropic 

distributions, the FRET efficiency is 50%. If we suppose that the non-radiative decay 

is negligible, which is a good approximation for many dyes, the Förster radius can be 

expressed by using the radiative fluorescence rate of the donor: 
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For typical dyes, transition dipole moments are of the order of 1 electron-Angstrom 

(i.e. several Debye). For a large value of the overlap integral of 1/[200 cm-1], 

corresponding to a large overlap, the maximum Förster radius is about 8 nm (case of 

Cy5-Cy5.5, with a very good overlap between donor emission and acceptor 

absorption). More typical values of the Förster radius are in the range 5-8 nm (5 nm 

for Cy3-Cy5), corresponding to lower overlap integrals. The FRET efficiency is 

related to the Förster radius and to the distance (for isotropic distributions) by:  
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The transfer efficiency can also be deduced from lifetime measurements of the donor, 

in the absence and in the presence of the acceptor, according to: 

( )1
(0)

D

D
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τ

= − . 

 

6.4. Single-pair FRET  

 

In order to observe significant FRET, we need donor and acceptor molecules within 

about one Förster radius from each other. This can be achieved in biomolecules by 

labeling the same molecule (e.g. a protein) with the two dyes (cf. S. Weiss, Science 

283 (1999) 1676). FRET is well adapted to typical sizes of protein molecules. The 

transfer will appear as acceptor fluorescence when the donor only is excited (due to 

the breadth of absorption bands, acceptor molecules are always partially excited too; 

the effect of direct acceptor absorption has to be corrected for). 

 
Figure 6.3 : Two biomolecules labelled with donor and acceptor fluorophores respectively, may 

associate. In the bound form, FRET is efficient and only the acceptor fluoresces. 

 

Single-pair FRET is detected by measuring for each doubly-labeled molecule the 

fluorescence intensities of donor and acceptor. The molecular fluorescence is split by 

a dichroic filter into signals from the donor DF , and from the acceptor AF . These 

quantities must be corrected for non-radiative rates (fluorescence quantum yields) and 

for direct acceptor absorption. The ratio 
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is then the FRET efficiency, and directly gives the D-A distance if the angular 

distribution of the molecules is isotropic. In the case of fixed donor and acceptor 

orientations, the angular factor is much more difficult to evaluate. It not only depends 

on the respective orientation of the dipole moments, which could be measured by 

polarization microscopy, but also on the radius vector, which is usually unknown. 

Lifetime measurement also provide access to the FRET efficiency. When possible, 

this measurement in the time domain is more direct and reliable than intensity 

measurements, which are subject to cross-talk and background artefacts.  

 

In bulk experiments, it is very important to ensure a high purity of the doubly-labeled 

molecules, because only average intensities are measured. For example, a fraction of 

the molecules labeled with the donor only would lead one to underestimate the 

transfer efficiency. In single-molecule experiments, one can measure the fluorescence 

signals of each molecule separately by exciting at two different wavelengths. The 

corresponding method is called Alternating Laser Excitation (ALEX, Kapanidis) or 

Pulse-Interleaved Excitation (PIE, Lamb) when the two lasers deliver consecutive 

pulses of two colors. In this way, the “stoichiometry” of the constructs (a number 

characterizing the presence of both donor and acceptor in the construct) can be 

verified: bursts of complete constructs should give fluorescence under either donor or 

acceptor excitation. Simply-labeled constructs with the donor alone give no 

fluorescence upon acceptor excitation, while constructs with acceptor alone give only 

the cross-talk of acceptor fluorescence upon donor excitation. These incomplete 

constructs will appear in the corners of a stoichiometry-FRET efficiency scatter plot. 

Incomplete constructs can thus be easily eliminated from the statistics, either in a 

simple histogram (see Fig. 6.4) or in a scatter plot. 
 

The easiest measurement in FRET is that of the distributions of efficiencies in 

immobilized molecules, or in slowly diffusing molecules if the signal is sufficient. In 

liquid solution, one often assumes isotropy, but this may not be valid if the labels are 

interacting strongly with the molecules to which they are bound, for example protein 

chains. 
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Figure 6.4 : A histogram of the FRET efficiencies measured for a large number of donor-acceptor 

pairs may reveal several distributions. Peaks at 0 and 1 may represent unbound molecules, or pairs in 

which either the acceptor or the donor have been photobleached. The other distributions represent two 

conformations of the pair, with a distributions of distances and/or of angles. 

 

A more difficult measurement is that of the dynamical fluctuations of the FRET 

efficiency. If the donor-acceptor distance fluctuates, while donor and acceptor are still 

randomly exploring isotropic distributions, anti-correlated fluctuations will appear 

either directly in the intensity traces of D and A fluorescence for immobilized 

molecules (Fig. 6.5), or as a negative cross-correlations in a FCS experiment in 

solution. 

 

 
Figure 6.5 : Conformational changes of a biomolecule carrying two FRET labels. Because these 

changes affect the FRET efficiency, they appear as anti-correlated fluctuations in the fluorescence 

traces of donor and acceptor. 
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Exercise 6.1: We want to derive the field created by a classical oscillating electric 

dipole ( )exp i tµ ω . Apply Maxwell’s equations and use the scalar (V ) and vector 

( A


)  potentials satisfying Lorentz’s gauge ( 2

1 0VA
c t

∂
∇ ⋅ + =

∂



) to derive Helmholtz’s 

equation for the vector potential:    
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, where the source term stems 

from the current density j


. For an oscillating dipole, show that this source term 

becomes ( )( ) expj i r i tωδ ω µ=


   and that the retarded potential solution  
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  solves the Helmholtz equation. Using the electric field 

expression AE V
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deduce the following expression of the field, including radiated field and near field: 
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Exercise 6.2: Show by integration over angles that, for an isotropic distribution of 

donor and acceptor, the average angular factor 2 2
3

κ = . 

 
 


